Wir haben festgestellt, dass Sie unsere Website von China aus besuchen.
Für Ihr Land (China) gibt es eine eigene Version der Website.

Zu China wechseln
 Technologien

INTELLiVENT®-ASV®. Ihr Helfer am Patientenbett

Grafische Darstellung: vier dunkle und eine leuchtende Glühlampe

Auf zum nächsten Level! INTELLiVENT-ASV bringt Sie weiter

Unser intelligenter Beatmungsmodus befördert Sie vom Tastendrücker zum Entscheider. INTELLiVENT-ASV reduziert die Anzahl der manuellen Einstellungen am Beatmungsgerät (Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-71​, Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668. 2​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.000313) und unterstützt die individuell angepasste lungenschonende Beatmung für Ihre Patienten (Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668. 2​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.000313​, Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014​). Von der Intubation bis zur Extubation.

Die Beatmungsmodi ASV (links) und INTELLiVENT-ASV (rechts)

Was ist anders? Ein ganz neues Konzept

Bei konventionellen Beatmungsmodi stellen Sie mehrere Parameter am Beatmungsgerät ein (z. B. Tidalvolumen oder Druck, Atemfrequenz, FiO2, PEEP sowie die Exspirations- und Inspirationszeit), um bestimmte klinische Ziele zu erreichen. Alle diese Parameter müssen auch noch häufig neu beurteilt und angepasst werden.

Bei INTELLiVENT-ASV stehen dagegen die von Ihnen festgelegten klinischen Ziele und Strategien für die Oxygenierung und Beatmung im Mittelpunkt. Nachdem Sie diese Ziele eingestellt haben, entscheiden Sie, inwieweit INTELLiVENT‑ASV die Regelung der Oxygenierung und Beatmung übernehmen soll, um die Ziele zu erreichen.

INTELLiVENT-ASV wählt anschliessend die Beatmungseinstellungen automatisch aus, steuert den Übergang zwischen dem aktiven und passiven Zustand und unterstützt aktiv Ihre Entwöhnungsprotokolle mit Quick Wean.

Grafische Darstellung: ein intubierter Patient mit einem Arzt am Bett

Ist das was für meine Patienten? Für intubierte erwachsene und pädiatrische Patienten

Mehrere internationale Studien belegen die Sicherheit und Wirksamkeit von INTELLiVENT-ASV in verschiedenen klinischen Szenarien – nach Herzoperationen (Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-71), bei COVID-19-Lungenentzündungen (Wendel Garcia PD, Hofmaenner DA, Brugger SD, et al. Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS. J Intensive Care Med. 2021;36(10):1184-1193. doi:10.1177/088506662110241395) sowie bei spezifischen Patientenzuständen wie COPD (Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014), Schädel-Hirn-Trauma (Sulemanji DS, Marchese A, Wysocki M, Kacmarek RM. Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation. Intensive Care Med. 2013;39(4):703-710. doi:10.1007/s00134-012-2742-66) und ARDS (Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014​).

Laurent Buscemi Dr. Adrian Wäckerlin Dr. João Alves

Kundenstimmen

Die durch den Einsatz von INTELLiVENT-ASV gewonnene Zeit kann für andere wichtige Aufgaben der Intensivbetreuung aufgewendet werden. So können wir uns auf die persönliche Patientenbetreuung und die grundlegende medizinische Versorgung konzentrieren.

Laurent Buscemi

Pfleger auf der Intensivstation
Interkommunales Krankenhaus, Département Var, Frankreich

Kundenstimmen

Das Konzept von Hamilton Medical, automatische Beatmung auf der Intensivstation zu etablieren, ist sicherlich ein Schritt in die richtige Richtung.

Dr. Adrian Wäckerlin

Leiter der Intensivstation
Kantonsspital Graubünden, Chur, Schweiz

Kundenstimmen

Bei der Versorgung des Patienten übernimmt INTELLIVENT-ASV die Basisaufgaben und ermöglicht es uns so, uns auf die kritischeren Aufgaben in der Entscheidungsfindung zu konzentrieren.

Dr. João Alves

Intensivmediziner, Interne Medizin und Notaufnahme seit 2018
Universitätskrankenhausgruppe Lissabon, Lissabon, Portugal

Dr. Jean-Michel Arnal, Oberarzt der Intensivmedizin Dr. Jean-Michel Arnal, Oberarzt der Intensivmedizin

Wie funktioniert das? Praktische Anleitung zu INTELLiVENT-ASV

In diesem Video zeigt der Oberarzt der Intensivmedizin Dr. Jean-Michel Arnal die wichtigsten Funktionen und Einstellungen für den Modus INTELLiVENT-ASV an einem echten Patienten auf der Intensivstation.

Grafische Darstellung: Dartpfeil ist auf das Ziel gerichtet

Achtung, Ziele einstellen, los geht's! Die ersten Schritte

Zuerst stellen Sie Grösse, Geschlecht und ggf. die bestimmten Zustände für den Patienten ein: ARDS, chronische Hyperkapnie oder Schädel-Hirn-Trauma. Danach legen Sie die klinischen Zielwerte für die Oxygenierung (SpO2) und CO2-Eliminierung (PetCO2) für den Patienten fest.

 

Nach diesen Einstellungen haben Sie verschiedene Möglichkeiten für die Feinabstimmung von INTELLiVENT-ASV. Sie können entscheiden, ob Sie den PEEP manuell festlegen möchten oder ob INTELLiVENT‑ASV den PEEP-Wert in einem von Ihnen definierten Bereich einstellen soll. Nachdem Sie die Alarmgrenzwerte geprüft und ggf. angepasst haben, können Sie die Beatmung starten.

Grafische Darstellung: Dartpfeil trifft das Ziel

Alle Werte im Zielbereich. So wird die Beatmung angepasst

INTELLiVENT‑ASV setzt Ihre Strategie am Patientenbett um. Anstatt immer wieder einzelne Einstellungen zu ändern, überwachen Sie die Zielwerte und passen die Strategie nur bei Bedarf an.

 

INTELLiVENT-ASV zielt darauf ab, dass die Zielwerte erreicht werden und im definierten Bereich bleiben – und stellt eine gleichbleibend lungenschonende Beatmung sicher (Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668. 2​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.000313​, Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014​). Die einzelnen Parameter am Beatmungsgerät (wie Atemfrequenz, Tidalvolumen, Inspirationsdruck, PEEP und FiO2) werden kontinuierlich angepasst und auch die Umstellung zwischen kontrollierter und assistierter Beatmung erfolgt automatisch – auf Grundlage der physiologischen Patientendaten, die bei jedem Atemhub beurteilt werden.

 

Diese Daten werden von drei Sensoren gemessen: Der proximale Flow-Sensor stellt Daten zur Lungenmechanik und zur Spontanaktivität des Patienten bereit, während der SpO2-Sensor und der CO2-Sensor Informationen zur Oxygenierung und CO2-Eliminierung liefern.

Statistische Grafik: 3 Phasen beim Entwöhnen eines Patienten

Ab an die frische Luft! So entwöhnen Sie Ihre Patienten

Nutzen Sie die Quick Wean-Funktion von INTELLiVENT-ASV, um Ihr Entwöhnungsprotokoll umzusetzen. Sie können Quick Wean während der Beatmung aktivieren, wenn der Patient spontan atmet.

Sie können Quick Wean konfigurieren, indem Sie durch einen SBT die Bereitschaft des Patienten für eine Trennung vom Beatmungsgerät bewerten lassen. Sie legen die Kriterien fest, wann ein SBT gestartet werden soll, welche Einstellungen während des SBT angewendet werden und wann der SBT abgebrochen wird.

INTELLiVENT-ASV zeigt immer eine Übersicht aller durchgeführten SBTs an. Ist ein SBT nicht erfolgreich, kehrt INTELLiVENT-ASV zu den vorherigen Einstellungen für die Beatmung zurück.

Statistische Grafik: Lellouche F. Intensive Care Med. 2013 Mar;39(3):463-471.

Was spricht dafür? Klinische Nachweise im Überblick

Klinische Studien belegen, dass INTELLiVENT-ASV sichere Einstellungen für Driving Pressure (Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014), Mechanical Power (Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0014) und Tidalvolumen wählt (Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39(3):463-471. doi:10.1007/s00134-012-2799-27​).

INTELLiVENT-ASV erfordert weniger manuelle Anpassungen als konventionelle Beatmungsmodi und trägt so zur Entlastung des Pflegepersonals bei (Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-71​, Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668. 2​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.000313​).

Grafische Darstellung: Studenten werfen ihre Hüte in die Luft

Gut zu wissen! Schulungsressourcen zu INTELLiVENT-ASV

Verfügbarkeit

INTELLiVENT-ASV ist auf den Beatmungsgeräten HAMILTON-G5, HAMILTON-C6, HAMILTON-C3, HAMILTON-C1 und HAMILTON-T1 als Option verfügbar und gehört auf dem HAMILTON-S1 zu den Standardmodi.

Referenzen

  1. 1. Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-7
  2. 2. Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668.
  3. 3. Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031
  4. 4. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.001

 

  1. 5. Wendel Garcia PD, Hofmaenner DA, Brugger SD, et al. Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS. J Intensive Care Med. 2021;36(10):1184-1193. doi:10.1177/08850666211024139
  2. 6. Sulemanji DS, Marchese A, Wysocki M, Kacmarek RM. Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation. Intensive Care Med. 2013;39(4):703-710. doi:10.1007/s00134-012-2742-6
  3. 7. Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39(3):463-471. doi:10.1007/s00134-012-2799-2

Fußnoten

 

Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients.

Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-7

Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.

Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668.



BACKGROUND

Closed-loop modes automatically adjust ventilation settings, delivering individualized ventilation over short periods of time. The objective of this randomized controlled trial was to compare safety, efficacy and workload for the health care team between IntelliVent®-ASV and conventional modes over a 48-hour period.

METHODS

ICU patients admitted with an expected duration of mechanical ventilation of more than 48 hours were randomized to IntelliVent®-ASV or conventional ventilation modes. All ventilation parameters were recorded breath-by-breath. The number of manual adjustments assesses workload for the healthcare team. Safety and efficacy were assessed by calculating the time spent within previously defined ranges of non-optimal and optimal ventilation, respectively.

RESULTS

Eighty patients were analyzed. The median values of ventilation parameters over 48 hours were similar in both groups except for PEEP (7[4] cmH2O versus 6[3] cmH2O with IntelliVent®-ASV and conventional ventilation, respectively, P=0.028) and PETCO2 (36±7 mmHg with IntelliVent®-ASV versus 40±8 mmHg with conventional ventilation, P=0.041). Safety was similar between IntelliVent®-ASV and conventional ventilation for all parameters except for PMAX, which was more often non-optimal with IntelliVent®-ASV (P=0.001). Efficacy was comparable between the 2 ventilation strategies, except for SpO2 and VT, which were more often optimal with IntelliVent®-ASV (P=0.005, P=0.016, respectively). IntelliVent®-ASV required less manual adjustments than conventional ventilation (P<0.001) for a higher total number of adjustments (P<0.001). The coefficient of variation over 48 hours was larger with IntelliVent®-ASV in regard of maximum pressure, inspiratory pressure (PINSP), and PEEP as compared to conventional ventilation.

CONCLUSIONS

IntelliVent®-ASV required less manual intervention and delivered more variable PEEP and PINSP, while delivering ventilation safe and effective ventilation in terms of VT, RR, SpO2 and PETCO2.

Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031



BACKGROUND

The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode.

MATERIALS AND METHODS

Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning (n = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning (n = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm.

RESULTS AND DISCUSSION

Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group (p < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group.

CONCLUSION

The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.

Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.

Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.001



BACKGROUND

Driving pressure (ΔP) and mechanical power (MP) are predictors of the risk of ventilation- induced lung injuries (VILI) in mechanically ventilated patients. INTELLiVENT-ASV® is a closed-loop ventilation mode that automatically adjusts respiratory rate and tidal volume, according to the patient's respiratory mechanics.

OBJECTIVES

This prospective observational study investigated ΔP and MP (and also transpulmonary ΔP (ΔPL) and MP (MPL) for a subgroup of patients) delivered by INTELLiVENT-ASV.

METHODS

Adult patients admitted to the ICU were included if they were sedated and met the criteria for a single lung condition (normal lungs, COPD, or ARDS). INTELLiVENT-ASV was used with default target settings. If PEEP was above 16 cmH2O, the recruitment strategy used transpulmonary pressure as a reference, and ΔPL and MPL were computed. Measurements were made once for each patient.

RESULTS

Of the 255 patients included, 98 patients were classified as normal-lungs, 28 as COPD, and 129 as ARDS patients. The median ΔP was 8 (7 - 10), 10 (8 - 12), and 9 (8 - 11) cmH2O for normal-lungs, COPD, and ARDS patients, respectively. The median MP was 9.1 (4.9 - 13.5), 11.8 (8.6 - 16.5), and 8.8 (5.6 - 13.8) J/min for normal-lungs, COPD, and ARDS patients, respectively. For the 19 patients managed with transpulmonary pressure ΔPL was 6 (4 - 7) cmH2O and MPL was 3.6 (3.1 - 4.4) J/min.

CONCLUSIONS

In this short term observation study, INTELLiVENT-ASV selected ΔP and MP considered in safe ranges for lung protection. In a subgroup of ARDS patients, the combination of a recruitment strategy and INTELLiVENT-ASV resulted in an apparently safe ΔPL and MPL.

Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS.

Wendel Garcia PD, Hofmaenner DA, Brugger SD, et al. Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS. J Intensive Care Med. 2021;36(10):1184-1193. doi:10.1177/08850666211024139



BACKGROUND

Lung-protective ventilation is key in bridging patients suffering from COVID-19 acute respiratory distress syndrome (ARDS) to recovery. However, resource and personnel limitations during pandemics complicate the implementation of lung-protective protocols. Automated ventilation modes may prove decisive in these settings enabling higher degrees of lung-protective ventilation than conventional modes.

METHOD

Prospective study at a Swiss university hospital. Critically ill, mechanically ventilated COVID-19 ARDS patients were allocated, by study-blinded coordinating staff, to either closed-loop or conventional mechanical ventilation, based on mechanical ventilator availability. Primary outcome was the overall achieved percentage of lung-protective ventilation in closed-loop versus conventional mechanical ventilation, assessed minute-by-minute, during the initial 7 days and overall mechanical ventilation time. Lung-protective ventilation was defined as the combined target of tidal volume <8 ml per kg of ideal body weight, dynamic driving pressure <15 cmH2O, peak pressure <30 cmH2O, peripheral oxygen saturation ≥88% and dynamic mechanical power <17 J/min.

RESULTS

Forty COVID-19 ARDS patients, accounting for 1,048,630 minutes (728 days) of cumulative mechanical ventilation, allocated to either closed-loop (n = 23) or conventional ventilation (n = 17), presenting with a median paO2/ FiO2 ratio of 92 [72-147] mmHg and a static compliance of 18 [11-25] ml/cmH2O, were mechanically ventilated for 11 [4-25] days and had a 28-day mortality rate of 20%. During the initial 7 days of mechanical ventilation, patients in the closed-loop group were ventilated lung-protectively for 65% of the time versus 38% in the conventional group (Odds Ratio, 1.79; 95% CI, 1.76-1.82; P < 0.001) and for 45% versus 33% of overall mechanical ventilation time (Odds Ratio, 1.22; 95% CI, 1.21-1.23; P < 0.001).

CONCLUSION

Among critically ill, mechanically ventilated COVID-19 ARDS patients during an early highpoint of the pandemic, mechanical ventilation using a closed-loop mode was associated with a higher degree of lung-protective ventilation than was conventional mechanical ventilation.

Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation.

Sulemanji DS, Marchese A, Wysocki M, Kacmarek RM. Adaptive support ventilation with and without end-tidal CO2 closed loop control versus conventional ventilation. Intensive Care Med. 2013;39(4):703-710. doi:10.1007/s00134-012-2742-6



PURPOSE

Our aim was to compare adaptive support ventilation with and without closed loop control by end tidal CO2 (ASVCO2, ASV) with pressure (PC) and volume control ventilation (VC) during simulated clinical scenarios [normal lungs (N), COPD, ARDS, brain injury (BI)].

METHODS

A lung model was used to simulate representative compliance (mL/cmH2O): resistance (cmH2O/L/s) combinations, 45:5 for N and BI, 60:7.7 for COPD, 15:7.7 and 35:7.7 for ARDS. Two levels of PEEP (cmH2O) were used for each scenario, 12/16 for ARDS, and 5/10 for others. The CO2 productions of 2, 3, 4 and 5 mL/kg predicted body weight/min were simulated. Tidal volume was set to 6 mL/kg during VC and PC. Outcomes of interest were end tidal CO2 (etCO2) and plateau pressure (P Plat).

RESULTS

EtCO2 levels in N and BI and COPD were similar for all modes. In ARDS, etCO2 was higher in ASVCO2 than in other modes (p < 0.001). Under all mechanical conditions ASVCO2 revealed a narrower range of etCO2. P Plat was similar for all modes in all scenarios but ARDS where P Plat in ASV and ASVCO2 were lower than in VC (p = 0.001). When P Plat was ≥ 28 cmH2O, P plat in ASV and ASVCO2 were lower than in VC and PC (p = 0.024).

CONCLUSION

All modes performed similarly in most cases. Minor differences observed were in favor of the closed loop modes. Overall, ASVCO2 maintained tighter CO2 control. The ASVCO2 had the greatest impact during ARDS allowing etCO2 to increase and protecting against hypocapnia evident with other modes while ensuring lower P plat and tidal volumes.

Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients.

Lellouche F, Bouchard PA, Simard S, L'Her E, Wysocki M. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013;39(3):463-471. doi:10.1007/s00134-012-2799-2



PURPOSE

Discrepancies between the demand and availability of clinicians to care for mechanically ventilated patients can be anticipated due to an aging population and to increasing severity of illness. The use of closed-loop ventilation provides a potential solution. The aim of the study was to evaluate the safety of a fully automated ventilator.

METHODS

We conducted a randomized controlled trial comparing automated ventilation (AV) and protocolized ventilation (PV) in 60 ICU patients after cardiac surgery. In the PV group, tidal volume, respiratory rate, FiO(2) and positive end-expiratory pressure (PEEP) were set according to the local hospital protocol based on currently available guidelines. In the AV group, only sex, patient height and a maximum PEEP level of 10 cmH(2)O were set. The primary endpoint was the duration of ventilation within a "not acceptable" range of tidal volume. Zones of optimal, acceptable and not acceptable ventilation were based on several respiratory parameters and defined a priori.

RESULTS

The patients were assigned equally to each group, 30 to PV and 30 to AV. The percentage of time within the predefined zones of optimal, acceptable and not acceptable ventilation were 12 %, 81 %, and 7 % respectively with PV, and 89.5 %, 10 % and 0.5 % with AV (P < 0.001). There were 148 interventions required during PV compared to only 5 interventions with AV (P < 0.001).

CONCLUSION

Fully AV was safe in hemodynamically stable patients immediately following cardiac surgery. In addition to a reduction in the number of interventions, the AV system maintained patients within a predefined target range of optimal ventilation.